Idaho National Engineering and Environmental Laboratory

Natural Gas Liquefaction

April, 2004

Using the "Energy" in Pipelines

- Pressure letdown from transmission to distribution represents "wasted" energy.
- Energy can be "re-captured" with turbo-expander inserted in place of the pressure-regulator station.
- "Re-captured" energy drives the turbo-expander to create pressure and temperature differentials needed to liquefy a portion of the natural gas stream.
- LNG production efficiency depends on pressure differential, gas composition and total gas throughput.

Small Scale Natural Gas Liquefaction

Small Scale Natural Gas Liquefaction Idaho National Engineering and Environmental Laboratory

Liquefier Operating Costs

- Methanol for water removal
 - 20,0001.13 gallons/hr
 - 40,000 2.23 gallons/hr
- Electrical- control system
- Instrument gas TBD
- Human oversight/maintenance TBD
- No natural gas is consumed

Demo. LNG Price Estimate

 Gas cost/ LNG gal. 	\$0.410
 Liquefaction fee 	\$0.047
 transmission fee/gal. 	\$0.041
 delivery charge/gal. 	<u>\$0.040</u>
 Price/LNG gal. delivered 	\$0.538

• Price/diesel gal. equiv. \$1.07 (With \$0.21/dge taxes included)

Price Competitiveness

Block Load Prices (LNG gallon equivalents)					
	Demo.		Current		
			High	Low	
LNG	\$	0.54	\$0.71	\$0.38	
Diesel			\$0.60	\$0.51	
LPG			\$0.86	\$0.38	
Fleet Fuel	Prices (Diesel gallon equivalents)				
LNG	\$	1.07	\$1.35	\$0.86	
CNG	\$	1.45	\$1.65	\$1.00	
Diesel			\$1.70	\$1.20	
LPG			\$1.70	\$0.85	

Natural Gas Liquefaction

- Pressure let-down liquefier— (Sacramento Plant) Utilizes pressure drop between transmission lines and distribution lines to liquefy 10% of gas flow
- Compressor based liquefier—(Riverdale Ca.) Connects to a high pressure transmission line and utilizes the pressure drop for liquefaction then uses a compressor to boost the gas that was not liquefied back to transmission line pressure. LNG yield is about 27% of the gas flow.
- 100% Liquefier—(Seeking partners) 100% liquefier will be used to liquefy gas from a stranded gas well, coal bed, bio-digester or other methane source. 100% of the gas will need to be either liquefied, treated or used as an energy source. R&D will be needed to manage the non methane gases.
- Mobile Liquefier—(Seeking partners) The mobile until could be either the compressor based or 100% liquefier that is packaged to reside on a trailer that can be moved as needed to various locations. LNG Storage is anticipated to be contained in LNG tanker trucks.

Meter Tube M2, Sac Gas Load Center 24" Distribution Line

